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In the article is presented the electro-dynamic model and method for numerical analysis of the diffraction efficiency of thin 
holographic diffraction gratings. Self-developing holographic gratings are easy to fabricate and can provide relatively high 
diffraction efficiency. Some photosensitive materials, such as chalcogenide glassy semiconductors of doped As-S-Se-Sn 
system used in a photo-thermoplastic recording process demonstrate the ability of registration the relief-phase gratings with 
efficiency up to 40% in transmitted light. The efficiency is highly dependent on the grating profile shape (groove shape and 
depth). Theoretical analysis is performed using the method of spectral expansions for periodic lattices. Semi-analytical 
dependences of efficiency on parameters of lattices with arbitrary continuous profile, including experimentally measured 
one by AFM, are obtained. They allow without using cumbersome numerical calculations to obtain the optimal shape of the 
lattice profile with maximum efficiency in a given diffraction order. A satisfactory agreement between numerical calculations 
and experimental measurements is demonstrated. It is shown that the optimal shape of the lattice for maximum efficiency 
tends to that of a symmetrical binary grating for which the theoretical limiting value of efficiency is 40.5%.  
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1. Introduction 
 

Self-developing holographic diffraction gratings are 

easy to fabricate and can provide relatively high 

diffraction efficiency (DE). They are produced in the 

process of registration of the interference field of two 

coherent laser beams falling at angles of   and   to the 

plane of recording material. At this, the grating’s period in 

general form can be written as  

 

,
sinsin  


n

λ
d                            (1) 

 

where   – wavelength in the vacuum, n  – average 

refractive index of the medium in which the lattice is 

recorded. The sign "+" corresponds to angles of incidence, 

measured on opposite sides of the normal, and the sign "-" 

– to angles, measured on one side of this normal. 

In the simplest case the structure of the recorded 

grating has a sinusoidal form. The theoretical limit of the 

“thin” sinusoidal grating’s DE is 33.9% [1-3]. A sinusoidal 

diffraction grating is the simplest periodic structure that 

can be recorded on a photosensitive material. However, 

the holographic gratings with smooth, close to sinusoidal, 

profile may be achieved only in case of linear response of 

the recording media. In practice, the non-linear response of 

the material can provide modulation of surfaces, which are 

drastically different from the sinusoidal form. Experiments 

show [4] that, in case of non-sinusoidal profile, the first-

order DE of gratings can reach 40% in transmitted light. In 

this case the efficiency is highly dependent upon the shape 

of the grating profile (groove’s shape and depth). 

Understanding of the importance of those parameters and 

of their control is thus crucial for obtaining gratings with 

highest efficiency. 

A big variety of recording processes and materials is 

used in the manufacture of holographic diffraction 

gratings, including recording on photochromics, 

photopolymers, photoresists, photo-thermoplastics and 

other photosensitive materials. As well, the gratings my be 

of different kind, such as surface-relief phase gratings or 

volume planar gratings with bulk refractive index or 

conductivity modulation. Selected papers related to 

holographic recording materials and their processing 

methods are presented in the well known SPIE Malestone 

volume [5]. Numerous studies [6-8], including ours [9-13], 

have shown that extremely high DE values for holographic 

diffraction gratings may be achieved using the photo-

thermoplastic (PTP) recording method. The PTP method is 

physically reduced to the creation of the light modulated 

mechanical relief on the surface of a thermoplastic layer. 

Due to the “amplification” of the modulation rate by an 

additionally applied electric field, its effective 

photosensitivity is very high. So, it can reach values of ~ 

10
6
 cm

2
J

-1
 for some of PTP recording media [12] based on 

chalcogenide glassy semiconductors of doped As-S-Se-Sn 

system and polymeric thermoplastic materials with 
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optimal deformation characteristics, synthesized from 

different copolymers of N-vinylcarbazole group. Also, the 

resolution of such PTP materials is relatively high and for 

some recording conditions may reach 4000 mm
-1

. Under 

those conditions the PTP carriers have the ability of 

registration of relief-phase gratings with high value of DE. 

It is important to emphasize that the high values of the 

individual registration characteristics from their full set 

can be obtained simultaneously, on one and the same 

sample [11]. Taking into account that the fabrication 

process of holographic gratings is quite quick and low 

cost, it makes PTP carriers the most suitable for real-time 

hologram interferometry and high-speed signal processing.  

High dependence of DE on the grating profile shape 

as well as on the electro-optical properties of the grating’s 

material opens the future prospects to improve the 

diffraction characteristics of PTP carriers by controlling 

these characteristics. Therefore the basic problem is to 

describe accurately the properties of the diffraction 

gratings of different kind. Several theoretical models and 

methods have been proposed for it [14-23]. The most 

common and exact of them are the rigorous coupled-wave 

approach (RCWA) developed by Moharam and Gaylord 

[14, 15] and the modal approach [16, 17]. Both theories 

rely on the Floquet theorem and as such assume truly 

periodic structure of gratings. Coupled-wave method 

originates from the popular Kogelnik’s coupled-wave 

(CW) theory [18]. It has been applied with success to 

different optical diffractive elements, first of all to analysis 

of the general planar-grating diffraction problem, and gave 

extremely accurate predictions for different orders of 

diffraction [19-28]. Method has been systematically 

extended to surface-relief dielectric gratings with different 

profiles: sinusoidal, square-wave, sawtooth, triangular, 

rectangular and others [20]. Modal approach also has its 

active development, including analytical and numerical 

methods [29-33]. Li proposed a multilayer modal method 

[30] in which a recursive and numerically stable S-matrix 

algorithm for modeling layered diffraction gratings has 

been developed. 

The coupled-wave, modal and S-matrix methods are 

exact for the formulation but are numerical, and rather 

difficult, methods in the technique used to find solutions of 

the wave equation in the modulated region. Thus, the 

RCWA and S-matrix methods give rise to a not simple 

eigenvalue problem for the coefficient matrix constructed 

from the coupled-wave equations. On the other hand, the 

modal approach requires solving a transcendental equation 

– even more difficult computational problem. The 

convergence of these methods to the exact solutions of the 

original electromagnetic problem was proved 

mathematically [22], so the numerical results have the 

character of prediction rather than they are a subject of the 

strict and systematical verification by experiments. Most 

often they are used for testing of the approximate 

diffraction theories. 

Currently there are various approximate versions of 

the rigorous coupled-wave and modal theories. Applying a 

series of fundamental assumptions to the rigorous theories, 

Gaylord and Moharam have obtained various approximate 

diffraction theories for general case of sinusoidal 

permittivity planar dielectric grating [19]. Among them are 

the well known Kogelnik theory, Raman-Nath theory, 

closely related to it amplitude transmittance theory and 

others. Numerical results for diffraction efficiencies have 

been obtained and their good agreement with the results of 

rigorous theory was demonstrated in the appropriate limits. 

However, most of the approximate theories derived from 

the rigorous approaches still assume numerical solutions 

of the differential coupled wave equations and are 

primarily intended for bulk refractive index modulated 

planar sinusoidal gratings [33, 34]. At the same time, the 

most significant result of the rigorous theory is 

ascertainment of the fact that for obtaining accurate 

predictions of diffraction efficiency in the theory of 

transmission gratings more important is retention of 

higher-order waves in expansion of the electric field in 

space harmonics, than keeping boundary conditions and 

second derivatives of the field amplitudes [14]. And 

conversely, second derivatives and boundary diffraction 

are more important in case of reflection gratings, than 

inclusion of higher-order waves. This result may be useful 

for developing of an approximate theory from the very 

start. It is still interesting to find analytical expressions for 

the DE in order to study the different parameters influence 

in the efficiency of the different orders. Such program can 

be realized in thin grating approximation. The concept of 

"thin" refers not to the full thickness of the grating, but 

only to its physically deformed (modulated) region. 

In this work the semi-analytical analysis of thin phase 

holographic gratings’ efficiency is done using the method 

of spectral expansions for an infinite periodic lattice. 

Analytical dependences of the DE on parameters of 

lattices with arbitrary continuous profile, including 

sinusoidal one, is obtained. Surface-relief phase gratings 

are simply obtained through a well-known holographic 

PTP recording method. The used for calculations real 

samples of profile were obtained by Atomic Force 

Microscopy (AFM) measurement method. A satisfactory 

agreement between the numerical calculations and 

experimental measurements is demonstrated. The optimal 

profile shape is identified that provides the maximum 

efficiency. 

 

 

2. Theoretical analysis of the diffraction  
    efficiency of holographic gratings with  
    arbitrary smooth relief 
 

In this section we describe our theoretical analysis of 

the DE of thin phase holographic gratings. Thin phase 

screen (or mask) approximation [35, 36] is used, in which 

the modifications of light properties within the material are 

considered small and the grating is replaced by a thin 

screen that changes the local phase of the transmitted light. 

This phase modulation is taken into account by specifying 

the grating’s deformation profile in the analytical form. 

The analysis is performed by using the method of spectral 

expansions for an infinite periodic lattice. The simplicity 

of the model allows obtaining analytical dependences of 
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the DE upon various parameters for lattices with arbitrary 

continuous profile, including sinusoidal one. On the basis 

of these dependences it is not only possible to quickly and 

effectively assess a particular result without to the use of 

cumbersome numerical calculations, but also to carry out 

the selection of optimal values of the parameters of the 

lattice to obtain maximum efficiency in a given diffraction 

order. 

 

2.1 Method of spectral decomposition of  

       electromagnetic field  

 

We consider the diffraction of the plane wave  

 

                       cossin0,
zxik

Aezxu


                           (2) (2) 

with amplitude A  and wave vector  

    cos,sin, 00 kkkkk zx 


 on a one-dimensional 

periodic dielectric lattice with period d . The lattice lies in 

the plane 0z , and is directed along the axis x . The 

following notations are used: 



2
0 k  - vacuum wave number, 

  - wavelength of light in vacuum, 

  - angle of incidence. 

In the model of a thin phase screen [35] the grating is 

described by its transmittance function (phase function of 

the lattice), which can be expressed as 

 

 
   xhnik

ext
1

0


  ,                            (3) 

 

where n  is the refractive index of the lattice material (for 

a dielectric 
21n ,   - dielectric constant),  xh  is a 

periodic in x  function describing its profile (thickness 

variations). 

In accordance with the accepted model the field, 

directly behind the grating, can be written in the form  

 

 
).0,())]()1(sin(exp[

)0,()0,(

0 xuxhnxikA

xtzxuzxu






         (4) 

 

In the framework of the scalar theory of diffraction 

and applying the standard method of spectral 

decompositions (for example, see [37, 38]) the general 

expression for the diffracted in the region 0z  field can 

be written as: 
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Here d2  is the spatial frequency of the 

grating. When light propagates in the positive direction of 

the z axis in the exponent should be left the sign "+". 

The resulting representation of the diffracted field (5) 

contains a full description of the analytical form of angular 

dispersion, as mathematically is the expansion in the full 

set of plane waves with spatial frequencies 

  mkkkx  sinsin 00
 and 

 20

2

00 sincos  mkkkkz  . These waves 

correspond to different diffraction orders m . Here   is 

the angle of diffraction and the term m  describes the 

presence of a constant phase shift between adjacent lattice 

periods. The first of these two expressions determines the 

angles of diffraction peaks; it implies the well-known 

lattice equation:    md  sinsin . From the 

second relation we can see that for   2

0

2

0 sin kmk   

we have the going to infinity homogeneous wave, and for 

  2

0

2

0 sin kmk   - inhomogeneous, exponentially 

decaying with 0z , waves (evanescent waves). 

Representing the first of these conditions in the form 

of inequality of second degree in m 

  0cossin2 22
2









mfm

d
m

d


    (6) 

 

and determining its roots: 

 

 


sin12,1 
d

m                                  (7) 

 

we obtain the conditions of existence of propagating 

diffraction modes: 
12 mmm  , or explicitly: 

 

   





sin1sin1 
d

m
d                   (8) 

 

Analyzing the condition (8), we can see that for an 

arbitrary angle of incidence the defined by it regions of 

existence of positive and negative diffraction orders 

...,1m  are not symmetrical relative to zero-mode 

0m  propagation direction (the direction by the angle 

of incidence 0 ). For example, at d  and positive 

 , there exists only negative first-order mode 1m , 

and vice versa, at d  and 0  observing is the 

positive mode 1m . 
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2.2 Intensity distribution in the diffraction modes 

 

According to the decomposition (5), the intensity of 

the diffracted field is the sum over the intensities  mI  of 

each diffraction order m : 

     









m

m

m

m VIzxu
22

, .          (9) 

 

Since there is no loss of energy in the phase optical 

element, the amount of decaying wave intensity in (9) 

describes the energy stored in the form of reactive power 

(energy of evanescent waves). Along with the distribution 

of the diffraction efficiency  
2

mV  in each order m , 

an important characteristic of the grating quality is the 

integral value of the energy-wise efficiency 0E , the 

corresponding fraction of energy per all diffraction orders 

[38]:  

.
2

1 1

1

0 







M

m

m

Mm

m IIE                          (10) 

 

The maximum numbers 
1M  and 

2M  are orders of 

diffracted homogeneous waves in (9) that are determined 

from (8). 

We did not use the explicit form of the transfer 

function  xt  of grating (3) in the derivation of the 

expansion (5). Thus, the representation, obtained for the 

diffracted by a one-dimensional periodic lattice field, is an 

exact solution, provided that the field  0,xu  is known in 

the plane of the lattice. For the specific intensity 

calculations the explicit form of the profile function  xh  

must be given. 

Further, we first derive the formulas for a pure 

sinusoidal phase grating, and then consider the lattice with 

real profiles obtained by the AFM. 

 

2.3  Sinusoidal phase grating 

 

For a grating with a sinusoidal profile the grating 

function  xh  in (5) can be written in the form 

  x
hh

lxh  cos
22

00
0

,                   (11) 

where 0l  is the thickness of unmodulated part of the layer, 

0h  is the depth of modulation, 

d2  is the spatial frequency of the grating, 

d  is the grating (fringe) period.  

Substituting (11) for the profile function in (5) for the 

spectral coefficients  mV  and making the necessary 

integration with the well-known Jacobi - Anger expansion 

on cylindrical functions [37, 39] 

      nxJixJe
n

n

nix cos2
1

0

cos 




      (12) 

we obtain: 

       m

mhlkni

m JiAeV 
 21 000 ,           (13) 

 

where      000 121 hnhkn  . Thus, for a 

sinusoidal phase grating the intensity distribution in the 

diffraction orders m is expressed by the square of the 

Bessel functions 

 

    22
mmm JAVI  .                (14) 

 

As the sum of the squared Bessel functions over all 

orders m is unity 

  1
2




m

mJ  , 

 

the expression (14) conservs the input power of light. 

As one can see, the diffraction efficiency is 

determined by two parameters: the refractive index n  and 

the ratio of the modulation depth 
0h  to the incident 

wavelength  . The unmodulated part 
0l  of thickness is 

not included in the expression for the intensity. As the 

determining thickness factor acts only the peak-to-trough 

height 
0h  of the grating profile. The grating period d is 

not included as well. This is due to the fact that the 

coefficients 
mV  in the expansion (5) are normalized to d  

coefficients of the Fourier expansion for periodic with 

respect to d  function     xhnik 1exp 0   (see (11)) in the 

plane waves with spatial frequencies dmm 2 . The 

result (14) is consistent with that of Raman-Nath theory 

obtained for the case of an unslanted fringe transmission 

grating [19]:   cos01

2 hJmm  , where 1  is the 

amplitude of the sinusoidal relative permittivity,   is the 

angle of refraction of the incident wave. Differences are 

only in the details of grating’s model (in the description of 

the phase difference). So we can conclude that ‘thin’ 

grating in our case is the same as ‘thin’ grating that 

produces Raman-Nath diffraction regim in planar case 

[40]. 

 

2.4 Periodic lattice with an arbitrary profile 

 

In the expression (5) for the spectral coefficients 

 mV , we consider now the profile function of general 

form. On the lattice period 22 dxd   we 

approximate it with the B-spline first-order polynomials 

 

     1,0,1   tthhhth jjjj
              (15) 

 

where  
jh  are samples  xh  defined at discrete 

points 1...,,1,0  Nj , 

Nd  is the sampling step, 
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N  is the number of partition segments. 

Now the integral  mV  in (5) is splitting into sum 

of integrals over the intervals of the period d  partition. 

Omitting the details of calculations, we give the result of 

the integration   
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were 
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Expressing the exponent in (16) in terms of 

trigonometric functions, we obtain the final expression for 

the intensity distribution in diffraction orders: 
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 (17) 

 

The number of points N  per grating’s period used in 

numerical calculations by this formula was taken equal to 

the number of samples in AFM profile measurements and 

for different examples was of 45-55 points per period. 

 

 

3. Numerical analysis of the diffraction mode  
    intensities 
 

In this section, we consider some examples of 

calculation according to the above formulas of the 

intensities in different diffraction orders. We assume a 

normally incident plane wave of unit amplitude at the 

wavelength μm63.0 . The modulation depth 
0h  of 

profile in all examples is less than the wavelength (thin 

grating). The periodic lattice has an arbitrary continuous  

profile, and the conditions of existence of the 

homogeneous waves 1,0,1m  are satisfied.   

 

3.1 Simple sinusoidal phase grating 

 

Calculations are performed using the formula 

  2mm JI  ,    01 hn  for 0,1m  and formula 

(10) for energy-wise efficiency 0E . Fig. 1 represents the 

dependence of diffraction intensities (in percent) upon the 

depth of profile 0h  for a fixed value 0.3 , typical for 

thermo-plastic polymer layers. There are three specific 

points 0h  in which, respectively: 

 

 

1.     6.0μm39.0%,98.29 00001  hhIhI . 

Equal intensities in orders 1  and 0. The energy-wise 

efficiency of the grating %600 E . Minimal loss of 

intensity in heterogeneous diffraction orders. For given 

values of the parameters the grating can be used as a beam 

splitter. The next points 
0h  of intensity intersection on the 

chart yield smaller efficiency; 

2.     8.0μm51.0%,94.9%,86.33 00001  hhIhI . 

The maximum theoretically possible value for the intensity 

 01 hI  of sinusoidal grating. Energy-wise efficiency also 

has its maximum %680 E . For a given depth of 

modulation grating can be used as a beams deflector; 

3.     0.1μm66.0%,00.0%,93.26 00001  hhIhI . 

The lack of intensity in the zero order   000 hI . Energy-

wise efficiency is %540 E . 

 

 
 

Fig. 1. Dependences of the diffraction efficiency of 

sinusoidal grating in the zero and first diffraction orders 

upon modulation depth 
0h . 

 

A further increase of profile depth at fixed value of 

the dielectric constant   decreases the values of 

diffraction intensity. As   is a part of the Bessel function 

argument in the form of the factor   0
21 1 h  (see (13)), 

the dependence family of the intensity on 0h  at smaller   

maintains its character, systematically shifting to the left. 

 

3.2 Grating with measured by AFM arbitrary  

       profile 

 

The creation of a grating with an ideal sinusoidal 

profile is possible provided a weak linear deformation of 

the thermoplastic layer. In reality, however, to increase 

efficiency, the depth of modulation must be increased, 

which naturally leads to the nonlinear deformation and to 

the deviation from the sinusoidal form. Thus, the real 

profile, obtained by nonlinear recording, can be 

established only by direct measurements, such as the AFM 

profile measurements. 

Fig. 2 shows the result of such a measurement of a 

quasi-sinusoidal grating. We can see that the measured 
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profile has irregular character both in the form and in the 

depth of modulation. This is primarily due to the imperfect 

character of the recorded grating but also due to the nature 

of geometrical shape measurements performed with the 

AFM.  

 

 
 

Fig. 2. A sample of AFM measured quasi-sinusoidal 

profile with μm44.0,μm95.0 0  hd . 

 

A characteristic feature of the AFM measurements is 

that the graphs of narrow and deep profiles are asymmetric 

(have a systematic tilt towards the cantilever move 

direction) due to the finite cantilever dimensions. In this 

case, we have to either artificially reconstruct the 

symmetry of curve in Fig. 2 or assess the energy-wise 

efficiency as the sum (10) over the intensities in the first 

orders of diffraction 
110  IIE . Under the conditions of 

imperfect data, the characteristic 
0E  is more 

presentational. In the following examples of calculations 

both approaches are used. 

 

Example 1. The grating with quasi-sinusoidal profile, 

μm44.0,μm95.0 0  hd  (Fig. 2). Fig. 3 presents the 

dependence of values 
110 ,, IIE  on the dielectric constant 

  taken in the range of 2-5 and calculated for a grating 

with measured profile of 4-th groove. The maximum of 

0E  equals to 68.9 at   = 3.3 ( n  = 1.82). This value is 

very close to the value of   for used thermoplastic 

material. So, in the real case of symmetrical grooves the 

1I  and 1I  can be estimated to the value of 34.5. 

Numerical symmetrization of groove’s profile gives 

somewhat lower values: 0E  = 63.0, 1I  = 1I  = 31.5. 

Thus, the results are closeer to those of pure sinusoidal 

grating. 

 

 
 

Fig. 3. Diffraction efficiency for real form of 4-th groove 

in Fig. 2. Maximum values: 
0E  = 68.91,   = 3.3 ( n  = 

1.82); 1I  = 48.08,   = 3.6 ( n  = 1.90); 1I  = 22.62, 

  = 3.0 ( n  = 1.73). 

 

This example shows that for the real asymmetric 

profiles the obtained values of the diffraction efficiency in 

one of the diffraction orders can be much higher than the 

limit value for the sinusoidal grating. This obviously 

means that the holographic gratings with asymmetric 

profile exhibit blazing characteristics. The only limitation 

is the possibility of practical realization of the desired 

profile. An universal fabrication method for holographic 

blazed gratings based on Fourier exposure synthesis has 

been proposed in [41]. 

 

Example 2. A sample of grating with measured 

profile, μm42.0,μm96.0 0  hd . A characteristic 

feature of this example is the presence of a small shelf in 

the minima of the grating profile (Fig. 4). The rough edges 

suggest that a tearing apart of the thermo-plastic material 

in the valleys has occurred as a result of the strong 

influence of electrostatic forces. The calculations were 

made for the second groove. In the Figure 5 the 

dependences of 0E , 1I , 1I  on   are presented. 

 

 
 

Fig. 4. A sample of AFM measured profile with the 

presence of small shelves in the minima 

μm42.0,μm96.0 0  hd . 
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The maximum value of 
0E  equals to 63.7 at   = 3.2 

( n  = 1.79). The curves 
1I  and 1I  are similar in form and 

in values, which is the result of a higher symmetry of 

grooves than in the case of grating in Figure 2. The 

maximum efficiency 
0E , obtained in this example, is 

smaller than that in the Example 2. A possible explanation 

for this is that the modulation depth of the thermoplastic 

deformation in the first example is larger (cf. Figs. 2 and 

4). 

 
 

Fig. 5. Diffraction efficiency for measured form of the 

second groove in Fig. 4. Maximum values: 
0E  = 63.70, 

  = 3.2 ( n  = 1.79); 
1I  = 34.89,   = 3.2 ( n  = 

1.79); 1I  = 28.95,   = 3.1 ( n  = 1.76). 

 

Example 3. A sample of grating of measured profile 

with μm41.0,μm98.0 0  hd . It is an example, when 

the electrostatic forces were strong enough during 

deformation to force all of the thermo-plastic material into 

the ridges, leaving the underlying photoconductor layer 

exposed (Figure 6). The calculations were made for the 

second groove. The dependences of 
0E , 

1I , 
1I  on   are 

presented in Figure 7. The maximum value of 
0E  equals 

to 76.2 at   = 3.4 ( n  = 1.84). Curves 1I  and 1I  are 

very different from each other, since the symmetry of the 

measured profile is strongly distorted. The maximum 

mean value of intensities 
1I  and 

1I  is thus 38.1, which is 

in good agreement with our experimental data. 

 

 
 

Fig. 6. The profile with μm41.0,μm98.0 0  hd , 

obtained under strong electrostatic impact. 

 

 
 

Fig. 7. Diffraction efficiency for the measured form of 1-

st groove in Fig. 6. Maximum values: 
0E  = 76.23,   = 

3.4 ( n  = 1.84); 
1I  = 49.04,   = 3.6 ( n  = 1.90); 1I  

= 28.40,   = 3.1 ( n  = 1.76). 

 

The developed method of the numerical analysis of 

DE can be easily applied in numerical experiments aimed 

to find the optimal shape for the profile, giving maximum 

efficiency in certain orders. Successive variation of the 

grating profile shape (shown in the third example) has 

shown that the desired shape (Fig. 8) resembles to that of a 

binary grating with equal sizes of open and closed sections 

of the period 2dba  . 

 

 
 

Fig. 8. Optimized groove form providing the maximum 

DE. 

 

The grating efficiency with such a profile tends to its 

limiting value of 40.5 (theoretical value of efficiency 

maximum for the binary rectangular lattice [3]). So, the 

grating with those in Fig. 8 profile (marked by the thick 

line) has a calculated efficiency of 
1I  = 39.98 at   = 3.0 

( n  = 1.73). The dependences of 
0E , 1I , 1I  on   are 

presented in the Fig. 9. We conclude thus that at normal 

incidence the value of 40.5 for efficiency is the limiting 

one for any smooth profile of symmetrical shape. 



Approximate analysis of the diffraction efficiency of transmission phase holographic gratings with smooth non-sinusoidal relief    63 

 

 
 

Fig. 9. Diffraction efficiency for optimal shape shown in 

Fig. 8. DEmax: 
0E  = 79.94, 

1I = 
1I  = 39.98,  = 3.01 

( n  =1.73). 

 

 

4. Conclusion 
 

Developed in this paper method of numerical analysis 

of the DE of holographic diffraction gratings with arbitrary 

continuous profile has confirmed the known results for 

gratings with a sinusoidal profile. Approach of thin grating 

in our case is the same as in the Raman-Nath approach for 

planar sinusoidal gratings. Method enables to determine 

the shape of a non-sinusoidal symmetric profile for which 

the maximum value of efficiency is achieved. The shape of 

the profile and the DE value tend to those for the binary 

rectangular grating with equal sizes of open and closed 

sections of the period 2dba   and with the DE = 

40.5% at normal incidence. In the case of a non-symmetric 

smooth profile efficiencies in the first plus- and minus- 

orders can differ greatly. This result qualitatively is in 

agreement with the case of slanted Bragg planar grating. It 

means that the holographic gratings with asymmetric 

profile exhibit blazing characteristics. It is not difficult to 

obtain numerically the asymmetric profiles with values of 

DE in one of the diffraction order much higher than the 

limit value for the sinusoidal grating. The only limitation 

is the possibility of practical creation of the desired profile. 

The obtained satisfactory agreement of numerical results 

with the experimental data confirms the conclusion of the 

rigorous theory that in case of transmission gratings more 

important is retention of higher-order waves than keeping 

boundary conditions and second derivatives of the field 

amplitudes [14].  

The simplicity of the described model allows 

obtaining analytical dependences of the diffraction 

efficiency on various parameters for lattices with arbitrary 

continuous profile, including sinusoidal one. On the basis 

of these dependences it is not only possible to quickly and 

effectively assess a particular result without using 

cumbersome numerical calculations, but also to choose 

optimal values of the parameters of the lattice to obtain 

maximum efficiency in a given diffraction order. 
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